Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

2015-09-06
2015-24-2497
The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
Technical Paper

Estimation of TTW and WTW Factors for a Light Duty Dual Fuel NG-Diesel EU5 Passenger Car

2014-04-01
2014-01-1621
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction in the amount of emitted carbon dioxide and is intrinsically cleaner, being much less prone to soot formation. In this respect, the Dual Fuel (DF) concept has already proven to be a viable solution, industrially implemented for several applications in the high duty engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields: the release of high amounts of unburned fuel, the risk of engine knock, the possible thermal efficiency reduction are some factors regarding the fuel combustion aspect. DF configuration examined in the present paper corresponds to Port Fuel Injection of natural gas and direct injection of the Diesel Fuel.
Technical Paper

Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine

2014-04-01
2014-01-1613
Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Technical Paper

Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel-LPG Blends

2019-09-09
2019-24-0038
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Characterization of Combustion and Emissions in Light-Duty Diesel Engines Using High-Glycerol-Ethers/Diesel Blends

2015-09-06
2015-24-2445
In this paper, a detailed analysis of combustion and emissions is carried out on both metal and optical light duty diesel engines equipped with up-to-date combustion architecture. Both engines were fed with glycerol ethers mixture (GEM) in blend (10% and 20% v/v) within a commercial diesel fuel. The engines ran in significant operating points in the NEDC (New European Driving Cycle) emission homologation area. The results of the experimental campaign on the metal engine show comparable performances between the diesel/GEM blends and the diesel fuel and demonstrate benefits mainly in terms of soot production. The exhaust particles diameters of diesel/GEM blends shift toward smaller dimensions and the total number decreases. Moreover, at lower load conditions, the outputs show a worsening of the unburnt mainly ascribable to the fuel characteristics.
Technical Paper

Emissive Behavior of a Heavy-Duty SI Gas Engine During WHTC

2019-09-09
2019-24-0121
In the arduous aim to reduce petroleum fuel consumption and toxic emissions, gaseous fuels can represent an alternative solution for heavy duty applications with respect to conventional liquid fuels. At the same time, the imposition of more stringent emission regulations in the transport sector, is a crucial aspect to be taken into account during the development of future gas engines. Aim of the present paper was to characterize a heavy duty spark ignition engine, under development for Euro VI compliance, with a particular focus on exhaust particulate emissions. In this sense, the engine was installed on a dynamic test bench, accurately instrumented to analyze combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC).
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

2015-04-14
2015-01-0898
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Journal Article

Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency

2020-06-30
2020-37-0003
In recent years the research on Diesel engines has been increasingly shifting from performance and refinement to ultra-low emissions and efficiency. In fact, the last two attributes are key for the powertrain competitiveness in the propulsion electrified future, especially in the European market where 95gCO2/km fleet average and Euro6D RDE Step2 are phasing in at the same time. The present paper describes some of the most innovative research that GM and Istituto Motori Napoli are performing in the field, exploring how the steel-based additive manufacturing can be used to create innovative combustion bowl features that optimize the combustion process to a level that was not compatible with standard manufacturing technologies.
Journal Article

Particle and Gaseous Emissions from a Heavy-Duty SI Gas Engine over WHTC Driving Cycles

2019-12-19
2019-01-2222
The use of gaseous fuels in internal combustion engines is increasing, due to several reasons, first of all their low environmental impact, large availability and low cost. Nevertheless, the need to reduce emissions also from gas engines is an important aspect to be considered in order to comply with future engine emissions regulations. In this scenario, an extensive experimental activity was performed to fully characterize an heavy duty spark ignition engine, under development for Euro VI compliance and designed to run with gaseous fuels. Two separate sets of experiments were carried out, in order to analyze the engine behavior when burning LPG and CNG, respectively. To this aim, the engine was installed on a dynamic test bench, accurately instrumented to characterize the combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC), the new European driving homologation cycle.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Journal Article

Key Fuel Injection System Features for Efficiency Improvement in Future Diesel Passenger Cars

2019-04-02
2019-01-0547
Diesel will continue to be an indispensable energy carrier for the car fleet CO2 emission targets in the short-term. This is particularly relevant for heavy-duty vehicles as for mid-size cars and SUVs. Looking at the latest technology achievements on the after-treatment systems, it can be stated that the concerning about the NOx emission gap between homologation test and real road use is basically solved, while the future challenge for diesel survival is to keep its competitiveness in the CO2 vs cost equation in comparison to other propulsion systems. The development of the combustion system design still represents an important leverage for further efficiency and emissions improvements while keeping the current excellent performance in terms of power density and low-end torque.
Technical Paper

Sustainability of Advanced ICEs Based HEVs for Passenger Cars Fuelled with Alternative Fuels: A LCA Study in Comparison with BEV Technology

2023-08-28
2023-24-0094
A possible environmental assessment of sustainable vehicular transport is based on a comparative analysis through the LCA Life Cycle Analysis methodology of the entire vehicle’s life cycle. For this purpose, it could contribute to the choices of political decision-makers and investors in the sector of large infrastructure and industrial works. Therefore, the LCA activity is of fundamental importance for the estimation and analysis of the economic and social impacts through the comparative analysis of technological solutions in scenarios of “accelerated technological evolution” and/or “sustainable mobility”. The study could be designed for different vehicle segments to evaluate their efficiency and overall environmental sustainability also related to current social and political scenarios. Couples with electric and internal combustion vehicles of the same market segment and category may be compared.
Technical Paper

Experimental and Numerical Investigation of a Particle Filter Technology for NG Heavy-Duty Engines

2023-04-11
2023-01-0368
The forthcoming introduction of the EURO VII regulation requires urgent strategies and solutions for the reduction of sub-23 nm particle emissions. Although they have been historically considered as particulate matter-free, the high interest for Natural Gas (NG) Heavy-Duty engines in the transport sector, demands their compliance with the new proposed regulations. In order to obtain high conversion of gas pollutants and a strong abatement of the emitted particles, the use of Particle Filters in NG aftertreatment (CPF) in conjunction with the Three-Way Catalyst (TWC) may represent an attractive and feasible solution. Performances of a cordierite filter were explored through an extensive experimental campaign both in Steady-State conditions and during transient engine maneuvers that involved a whole analysis of the emitted particles in terms of number and mass.
Technical Paper

Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive And systemic Experimentation on a Hydrogen Internal Combustion Engine

2023-04-11
2023-01-0340
Hydrogen Internal Combustion Engines (H2-ICEs) are subject to increased attention thanks to their extremely low criteria pollutant emission and near-zero CO2 tailpipe emissions. However, to further minimize exhaust emissions and increase the efficiency of a H2-ICE, it is important to carefully control the relative air-fuel ratio of operation, i.e. Lambda (λ), which will lead in turn to an optimal combustion process. The precise λ control mainly relies upon the methodology to calculate λ on board of the engine, where the availability of reliable sensors specifically-developed for hydrogen combustion is currently limited. In this article, a comparative analysis of different methodologies for the calculation of λ is performed, comparing four methodologies: exhaust gas analysis through a Spindt-Brettschneider approach (λEMI), raw Universal Exhaust Gas Oxygen (λR-UEGO), processed Universal Exhaust Gas Oxygen (λP-UEGO) and speed-density (λSD) outputs.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Experimental Comparison of Different Cycle-Based Methodologies for the INDICATING in Hydrogen-Fueled Internal Combustion Engines

2024-04-09
2024-01-2834
High cycle-to-cycle variations (CTCV) in a Hydrogen-Fueled Internal Combustion Engine (H2-ICE), especially in the lean-burn condition, not only lower the engine’s efficiency but also increase emissions and torque variations. High CTCV are mainly due to the variations in: mixture motion within the cylinder at the time of spark, amount of air and fuel fed to the cylinder, and mixing of the fresh mixture and residual gases within the cylinder during each cycle. In this article, multiple cycle-based methodologies were compared and analyzed specifically for H2-ICEs based on systematic experimentation. The experimental test campaign was performed on a Port Fuel Injection (PFI) H2-ICE designed by PUNCH Torino and data is processed with MATLAB. A MATLAB code is also proposed as a tool for comparing multiple methodologies for the analysis of CTCV specifically for H2-ICE.
Technical Paper

A Three-Way Catalyst Model for a Bio-Methane Heavy-Duty Engine: Characterization at Different Lambda

2024-04-09
2024-01-2084
Given the spread of natural gas engines in low-term toward decarbonization and the growing interest in gaseous mixtures as well as the use of hydrogen in Heavy-Duty (HD) engines, appropriate strategies are needed to maximize thermal efficiency and achieve near-zero emissions from these propulsor systems. In this context, some phenomena related to real-world driving operations, such as engine cut-off or misfire, can lead to inadequate control of the Air-to-Fuel ratio, key factor for Three-Way Catalyst (TWC) efficiency. Goal of the present research activity is to investigate the performance of a bio-methane-fueled HD engine and its Aftertreatment System (ATS), consisting of a Three-Way Catalyst, at different Air-to-Fuel ratio. An experimental test bench characterization, in different operating conditions of the engine workplan, was carried out to evaluate the catalyst reactivity to a defined pattern of the Air-to-Fuel ratio.
X